skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Lopez-Aviles, Helena"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Geometric phases appear ubiquitously in many and diverse areas of the physical sciences, ranging from classical and molecular dynamics to quantum mechanics and solid-state physics. In the realm of optics, similar phenomena are known to emerge in the form of a Pancharatnam-Berry phase whenever the polarization state traces a closed contour on the PoincarĂ© sphere. While this class of geometric phases has been extensively investigated in both free-space and guided wave systems, the observation of similar effects in photon tunneling arrangements has so far remained largely unexplored. Here, we experimentally demonstrate that the tunneling or coupling process in a twisted multicore fiber system can display a chiral geometric phase accumulation, analogous to the Aharonov-Bohm effect. In our experiments, the tunneling geometric phase is manifested through the interference of the corresponding supermodes. Our work provides the first observation of Aharonov-Bohm suppression of tunneling in an optical setting. 
    more » « less